16 research outputs found

    Localized Data Work as a Precondition for Data-Centric ML: A Case Study of Full Lifecycle Crop Disease Identification in Ghana

    Full text link
    The Ghana Cashew Disease Identification with Artificial Intelligence (CADI AI) project demonstrates the importance of sound data work as a precondition for the delivery of useful, localized datacentric solutions for public good tasks such as agricultural productivity and food security. Drone collected data and machine learning are utilized to determine crop stressors. Data, model and the final app are developed jointly and made available to local farmers via a desktop application

    Generative Fractional Diffusion Models

    Full text link
    We generalize the continuous time framework for score-based generative models from an underlying Brownian motion (BM) to an approximation of fractional Brownian motion (FBM). We derive a continuous reparameterization trick and the reverse time model by representing FBM as a stochastic integral over a family of Ornstein-Uhlenbeck processes to define generative fractional diffusion models (GFDM) with driving noise converging to a non-Markovian process of infinite quadratic variation. The Hurst index H(0,1)H\in(0,1) of FBM enables control of the roughness of the distribution transforming path. To the best of our knowledge, this is the first attempt to build a generative model upon a stochastic process with infinite quadratic variation

    DiffInfinite: Large Mask-Image Synthesis via Parallel Random Patch Diffusion in Histopathology

    Full text link
    We present DiffInfinite, a hierarchical diffusion model that generates arbitrarily large histological images while preserving long-range correlation structural information. Our approach first generates synthetic segmentation masks, subsequently used as conditions for the high-fidelity generative diffusion process. The proposed sampling method can be scaled up to any desired image size while only requiring small patches for fast training. Moreover, it can be parallelized more efficiently than previous large-content generation methods while avoiding tiling artefacts. The training leverages classifier-free guidance to augment a small, sparsely annotated dataset with unlabelled data. Our method alleviates unique challenges in histopathological imaging practice: large-scale information, costly manual annotation, and protective data handling. The biological plausibility of DiffInfinite data is validated in a survey by ten experienced pathologists as well as a downstream segmentation task. Furthermore, the model scores strongly on anti-copying metrics which is beneficial for the protection of patient data

    Data Models for Dataset Drift Controls in Machine Learning With Images

    Full text link
    Camera images are ubiquitous in machine learning research. They also play a central role in the delivery of important services spanning medicine and environmental surveying. However, the application of machine learning models in these domains has been limited because of robustness concerns. A primary failure mode are performance drops due to differences between the training and deployment data. While there are methods to prospectively validate the robustness of machine learning models to such dataset drifts, existing approaches do not account for explicit models of the primary object of interest: the data. This makes it difficult to create physically faithful drift test cases or to provide specifications of data models that should be avoided when deploying a machine learning model. In this study, we demonstrate how these shortcomings can be overcome by pairing machine learning robustness validation with physical optics. We examine the role raw sensor data and differentiable data models can play in controlling performance risks related to image dataset drift. The findings are distilled into three applications. First, drift synthesis enables the controlled generation of physically faithful drift test cases. The experiments presented here show that the average decrease in model performance is ten to four times less severe than under post-hoc augmentation testing. Second, the gradient connection between task and data models allows for drift forensics that can be used to specify performance-sensitive data models which should be avoided during deployment of a machine learning model. Third, drift adjustment opens up the possibility for processing adjustments in the face of drift. This can lead to speed up and stabilization of classifier training at a margin of up to 20% in validation accuracy. A guide to access the open code and datasets is available at https://github.com/aiaudit-org/raw2logit.Comment: LO and MA contributed equall

    Dataset similarity to assess semi-supervised learning under distribution mismatch between the labelled and unlabelled datasets

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Semi-supervised deep learning (SSDL) is a popular strategy to leverage unlabelled data for machine learning when labelled data is not readily available. In real-world scenarios, different unlabelled data sources are usually available, with varying degrees of distribution mismatch regarding the labelled datasets. It begs the question which unlabelled dataset to choose for good SSDL outcomes. ftentimes, semantic heuristics are used to match unlabelled data with labelled data. However, a quantitative and systematic approach to this election problem would be preferable. In this work, we first test the SSDL MixMatch algorithm under various distribution mismatch configurations to study the impact on SSDL accuracy. Then, we propose a quantitative unlabelled dataset selection heuristic based on dataset dissimilarity measures. These are designed to systematically assess how distribution mismatch between the labelled and unlabelled datasets affects MixMatch performance. We refer to our proposed method as deep dataset dissimilarity measures (DeDiMs), designed to compare labelled and unlabelled datasets. They use the feature space of a generic Wide-ResNet, can be applied prior to learning, are quick to evaluate and model agnostic. The strong correlation in our tests between MixMatch accuracy and the proposed DeDiMs suggests that this approach can be a good fit for quantitatively ranking different unlabelled datasets prior to SSDL training

    Data models for dataset drift controls in machine learning with optical images

    Get PDF
    Camera images are ubiquitous in machine learning research. They also play a central role in the delivery of important public services spanning medicine or environmental surveying. However, the application of machine learning models in these domains has been limited because of robustness concerns. A primary failure mode are performance drops due to differences between the training and deployment data. While there are methods to prospectively validate the robustness of machine learning models to such dataset drifts, existing approaches do not account for explicit models of machine learning’s primary object of interest: the data. This limits our ability to study and understand the relationship between data generation and downstream machine learning model performance in a physically accurate manner. In this study, we demonstrate how to overcome this limitation by pairing traditional machine learning with physical optics to obtain explicit and differentiable data models. We demonstrate how such data models can be constructed for image data and used to control downstream machine learning model performance related to dataset drift. The findings are distilled into three applications. First, drift synthesis enables the controlled generation of physically faithful drift test cases to power model selection and targeted generalization. Second, the gradient connection between machine learning task model and data model allows advanced, precise tolerancing of task model sensitivity to changes in the data generation. These drift forensics can be used to precisely specify the acceptable data environments in which a task model may be run. Third, drift optimization opens up the possibility to create drifts that can help the task model learn better faster, effectively optimizing the data generating process itself to support the downstream machine vision task. This is an interesting upgrade to existing imaging pipelines which traditionally have been optimized to be consumed by human users but not machine learning models. The data models require access to raw sensor images as commonly processed at scale in industry domains such as microscopy, biomedicine, autonomous vehicles or remote sensing. Alongside the data model code we release two datasets to the public that we collected as part of this work. In total, the two datasets, Raw-Microscopy and Raw-Drone, comprise 1,488 scientifically calibrated reference raw sensor measurements, 8,928 raw intensity variations as well as 17,856 images processed through twelve data models with different configurations. A guide to access the open code and datasets is available at https://github.com/aiaudit-org/raw2logit
    corecore